定义R上的函数满足f(-x)=1/f(x)>0,又g(x)=f(x)+c(c为常数)在[a,b]上是单调增函数证明g(x)在[-b,-a]的单调
问题描述:
定义R上的函数满足f(-x)=1/f(x)>0,又g(x)=f(x)+c(c为常数)在[a,b]上是单调增函数证明g(x)在[-b,-a]的单调
答
g(x)在[a,b]上是单调增函数
即ag(x1)
所以f(x1)
所以f(-x2)-f(-x1)
=1/f(x2)-1/f(x1)
=[f(x1)-f(x2)]/f(x1)f(x2)
1/f(x)>0,即f(x)>0
所以分母f(x1)f(x2)>0
f(x1)
g(x)=f(x)+c
所以g(-x2)-g(-x1)=f(-x2)-f(-x1)所以单调递增