设x,y,z是实数,3x,4y,5z成等比数列,且x分之1,y分之1,z分之1成等差数列,求z分之x加x分之z的值设x,y,z是实数3x,4y,5z成等比数列,且x分之1,y分之1,z分之1成等差数列,求z分之x加x分之z的值

问题描述:

设x,y,z是实数,3x,4y,5z成等比数列,且x分之1,y分之1,z分之1成等差数列,求z分之x加x分之z的值
设x,y,z是实数3x,4y,5z成等比数列,且x分之1,y分之1,z分之1成等差数列,求z分之x加x分之z的值

3x*5z=16y^2
2/y=1/x+1/z 对该式做平方得到
4/y^2=(x^2+z^2+2xz)/(xz)^2=64/16y^2=64/15xz
(x^2+z^2)/xz=64/15-2=34/15
即为所求

3x,4y,5z成等比数列
所以16y^2=3x*5z=15xz
x分之1,y分之1,z分之1成等差数列
所以2/y=1/x+1/z=(x+z)/xz
y=2xz/(x+z)
所以y^2=4x^2z^2/(x+z)^2
代入16y^2=15xz
所以64x^2z^2/(x+z)^2=15xz
64xz/(x+z)^2=15
(x+z)^2=64/15*xz
x^2+2xz+z^2=64/15*xz
x^2+z^2=34/15*xz
x/z+z/x
=(x^2+z^2)/xz
=34/15

x/z+z/x(4y)^2=3x*5z2/y=1/x+1/zy=2xz/(x+z)(4y)^2=[8xz/(x+z)]^2=15xz64xz=15(x+z)^2,除以z^264x/z=15(x/z+1)^2设x/z=m15(m+1)^2=64mm^2+2m+1=64/15*mm^2-34/15*m+1=0m=(34/15±16/15)/2m=3/5或5/3x/z+z/x=3/5+5/3=...