已知抛物线y2=2px(p>0)有一个内接直角三角形,直角顶点在原点,斜边长为2 13

问题描述:

已知抛物线y2=2px(p>0)有一个内接直角三角形,直角顶点在原点,斜边长为2 13

为了便于理解,先自己画个图出来,(以原点为顶点,暂定x轴正方向为开口方向的抛物线)设另外两个顶点分别为M、N,M在第一象限,N在第四象限.
然后知道M点是过直线y=2x的(一条直角边)
则M点为抛物线和直线的交点,
可知:Ym²=2pXm
Ym=2Xm
解关于Xm,Ym的二元方程得:M(p/2,p)
又另一条直角边是与直线y=2x垂直的,且过原点,故其方程为:y=-1/2x
则N点为抛物线和直线y=-1/2x的交点
可知:Yn²=2pXn
Yn=-1/2Xn
解关于Xn,Yn的二元方程组得:N(8p,-4p)
由以上可以知道:OM²=p²/4+p²
ON²=64p²+16p²
则根据直角三角形勾股定理有:
OM²+ON²=MN²
得:p²/4+p²+64p²+16p²=75
化简得:81.25p²=75
则p=正负13分之根号156
所以,抛物线的方程为:有两个,自己写了.