设f(x)=ax+xlnx,g(x)=x3-x2-3.(1)当a=2时,求曲线y=f(x)在x=1处的切线方程;(2)如果存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,求满足上述条件的最大整数M;(3)如果对任意的s,t∈[12,2],都有f(s)≥g(t)成立,求实数a的取值范围.

问题描述:

f(x)=

a
x
+xlnx,g(x)=x3-x2-3.
(1)当a=2时,求曲线y=f(x)在x=1处的切线方程;
(2)如果存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,求满足上述条件的最大整数M;
(3)如果对任意的s,t∈[
1
2
,2]
,都有f(s)≥g(t)成立,求实数a的取值范围.

(1)当a=2时,f(x)=2x+xlnx,f′(x)=−2x2+lnx+1,f(1)=2,f'(1)=-1,所以曲线y=f(x)在x=1处的切线方程为y=-x+3;(4分)(2)存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立等价于:[g(x1)-g(x2)]ma...
答案解析:(1)根据导数的几何意义求出函数f(x)在x=1处的导数,从而求出切线的斜率,最后用直线的斜截式表示即可;
(2)存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立等价于:[g(x1)-g(x2)]max≥M,先求导数,研究函数的极值点,通过比较与端点的大小从而确定出最大值和最小值,从而求出[g(x1)-g(x2)]max,求出M的范围;
(3)当x∈[

1
2
,2]时,f(x)=
a
x
+xlnx≥1
恒成立等价于a≥x-x2lnx恒成立,令h(x)=x-x2lnx,利用导数研究h(x)的最大值即可求出参数a的范围.
考试点:利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.

知识点:本题考查了利用导数求闭区间上函数的最值,求函数在闭区间[a,b]上的最大值与最小值是通过比较函数在(a,b)内所有极值与端点函数f(a),f(b) 比较而得到的,以及利用导数研究曲线上某点切线方程,考查了划归与转化的思想,属于中档题.