n/m=2/3,n不等于2,求(n-m+1)/(n+m-5)的值
问题描述:
n/m=2/3,n不等于2,求(n-m+1)/(n+m-5)的值
答
N=2/3M
带入(n-m+1)/(n+m-5)=(-1/3m+1)/(5/3m-5)=-1/5
答
设n=2k,m=3k
因n≠2,
所以有k≠1.
故
原式
=(2k-3k+1)/(2k+3k-5)
=(1-k)/(5k-5)
因为k≠1,
所以分母5k-5≠0.
故
原式=-1/5.
答
令m=3n/2 ( n-3n/2+1)/(n+3n/2-5)=>-(1n/2-1)/5(1n/2-1)=>-1/5
答
n/m=2/3,即n=2m/3
(n-m+1)/(n+m-5)=(2m/3-m+1)/(2m/3+m-5)
=(-m/3+1)/(5m/3-5)
=-1/5
=-0.2
答
n/m=2/3
n=(2/3)m
(n-m+1)/(n+m-5)
=[(2/3)m-m+1]/[(2/3)m+m-5]
=[-(1/3)m+1]/[(5/3)m-5]
=(-1/3)(m-3)/[(5/3)(m-3)]
=(-1/3)/(5/3)
=-1/5