如何证明tanαtanβ+tan(90°-α-β)tanα+tan(90°-α-β)tanβ=1

问题描述:

如何证明tanαtanβ+tan(90°-α-β)tanα+tan(90°-α-β)tanβ=1

tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
(tanα+tanβ)=tan(α+β)(1-tanαtanβ)
tan(90°-α-β)=cot(α+β)
tanαtanβ+tan(90°-α-β)tanα+tan(90°-α-β)tanβ
=tanαtanβ+tan(90°-α-β)(tanα+tanβ)
=tanαtanβ+cot(α+β)(tanα+tanβ)
=tanαtanβ+cot(α+β)tan(α+β)(1-tanαtanβ)
=tanαtanβ+(1-tanαtanβ)
=1