数列{an}满足a1=3,1/an+1-1/an=5(n∈N+),则an=_.

问题描述:

数列{an}满足a1=3,

1
an+1
-
1
an
=5(n∈N+),则an=______.

∵根据所给的数列的递推式

1
an+1
1
an
=5
∴数列{
1
an
}是一个公差是5的等差数列,
∵a1=3,
1
a1
=
1
3

∴数列的通项是
1
an
1
a1
+5(n−1)=
1
3
+5n−5=5n−
14
3

an
3
15n−14

故答案为:
3
15n−14