已知奇函数y=f(x)在其定义域【-1,1】内时间函数,且f(1-a)+f(1-a2)大于0,求实数a的范围

问题描述:

已知奇函数y=f(x)在其定义域【-1,1】内时间函数,且f(1-a)+f(1-a2)大于0,求实数a的范围
已知奇函数y=f(x)在其定义域【-1,1】内是减函数,且f(1-a)+f(1-a2)大于0,求实数a的范围

楼上的2位兄弟如果注意“定义域”就会做的很好了!
我认为:
f(1-a)+f(1-a²)>0推出
f(1-a)>-f(1-a²)即
f(1-a)>f(a²-1)
所以,有如下不等式组
-1≤1-a≤1
-1≤a²-1≤1
1-a<a²-1
综合可解出
0≤a≤2
0≤a^2≤2即-√2≤a≤0或0≤a≤√2
a²+a-2>0即a>1或a<-2.
综上所述:1<a≤√2