求y=sin^2(x/2)+4sinx的值域

问题描述:

求y=sin^2(x/2)+4sinx的值域

y=(1-cosx)/2+4sinx
=4sinx-cosx/2+1/2;
=√(16+1/4)(sinx×4/√(16+1/4)-cosx×(1/2)/√(16+1/4))+1/2;
=√65/2sin(x-φ)+1/2;(sinφ=1/2/(√65/2)=√65/65;)
∴-1≤sin(x-φ)≤1
∴-√65/2≤√65/2sin(x-φ)≤√65/2;
值域为[(1-√65)/2,(1+√65)/2]
如果本题有什么不明白可以追问,