求全微分:z=xcos(x-y)
问题描述:
求全微分:z=xcos(x-y)
$(acontent)
答
z=xcos(x-y)
zx=cos(x-y)-xsin(x-y)
zy=xsin(x-y)
所以
dz=zxdx+zydy=[cos(x-y)-xsin(x-y)]dx+xsin(x-y)dy