曲线y=-x2+1在点(1,0)处的切线方程为( ) A.y=x-1 B.y=-x+1 C.y=2x-2 D.y=-2x+2
问题描述:
曲线y=-x2+1在点(1,0)处的切线方程为( )
A. y=x-1
B. y=-x+1
C. y=2x-2
D. y=-2x+2
答
由y=-x2+1,得y′=-2x,
所以y′|x=1=-2,
则线y=-x2+1在点(1,0)处的切线方程为y-0=-2(x-1),
即y=-2x+2.
故选D.