设a>0,b>0,2c>a+b,求证:c-c2−ab<a<c+c2−ab.

问题描述:

设a>0,b>0,2c>a+b,求证:c-

c2−ab
<a<c+
c2−ab

证明:要证c-

c2−ab
<a<c+
c2−ab

即证:-
c2−ab
<a-c<
c2−ab

即证:(a-c)2<c2-ab,
即证:a2-2ac<-ab,
即证:a2+ab<2ac.
∵a>0,
也就是证:a+b<2c,而此不等式为已知条件,显然成立.
故不等式c-
c2−ab
<a<c+
c2−ab
成立.