设a>0,b>0,2c>a+b,求证:c-c2−ab<a<c+c2−ab.
问题描述:
设a>0,b>0,2c>a+b,求证:c-
<a<c+
c2−ab
.
c2−ab
答
证明:要证c-
<a<c+
c2−ab
,
c2−ab
即证:-
<a-c<
c2−ab
,
c2−ab
即证:(a-c)2<c2-ab,
即证:a2-2ac<-ab,
即证:a2+ab<2ac.
∵a>0,
也就是证:a+b<2c,而此不等式为已知条件,显然成立.
故不等式c-
<a<c+
c2−ab
成立.
c2−ab