sinA+sin(90°-A)+1/sinA-sin(90°-A)+1=cot(A/2) 请问这怎么证明,
问题描述:
sinA+sin(90°-A)+1/sinA-sin(90°-A)+1=cot(A/2) 请问这怎么证明,
答
证明:∵sinA+sin(90°-A)+1=sinA+cosA+1
=2sin(A/2)cos(A/2)+2[cos(A/2)]^2
=2cos(A/2)[sin(A/2)+cos(A/2)]
sinA-sin(90°-A)+1=sinA-cosA+1
=2sin(A/2)cos(A/2)+2[sin(A/2)]^2
=2sin(A/2)[cos(A/2)+sin(A/2)]
∴[sinA+sin(90°-A)+1]/[sinA-sin(90°-A)+1]=[2cos(A/2)]/[2sin(A/2)]=cot(A/2)
∴[sinA+sin(90°-A)+1]/[sinA-sin(90°-A)+1]=cot(A/2)∵sinA+sin(90°-A)+1=sinA+cosA+1=2sin(A/2)cos(A/2)+2[cos(A/2)]^2请问为什么这里没有一,而且是cos(A/2)而不是 sin(A/2),谢谢∵cosA=cos(2*(A/2))=2[cos(A/2)]^2-1(这里用到了二倍角公式哈)∴cosA+1=2[cos(A/2)]^2