甲从A地乙丙从B地同时出发相向而行.甲乙先相遇后,乙又用了3.2小时到达A地,甲又行了2小时遇到丙.甲丙相遇后,甲继续前进了3小时到达B地;丙12小时后到达A地.如果乙比丙每小时多行40千米,则A、B两地相距多少千米?(算术法及思路)
问题描述:
甲从A地乙丙从B地同时出发相向而行.甲乙先相遇后,乙又用了3.2小时到达A地,甲又行了2小时遇到丙.甲丙相遇后,甲继续前进了3小时到达B地;丙12小时后到达A地.如果乙比丙每小时多行40千米,则A、B两地相距多少千米?(算术法及思路)
答
480千米.
首先考虑甲乙两人相向运动,相遇点为C,设甲乙相遇时用t小时.
甲走AC用时t小时,走CB用时(2+3)=5小时,
乙走AC用时3.2小时,走CB用时t小时.
速度一定时,路程与时间成正比.
则 t:5=3.2:t ,t=4小时.
那么乙走完全程用(4+3.2)=7.2小时,
丙走完全程用(4+2+12)=18小时.
路程一定时速度比为时间反比,所以乙速度比并速度=18:7.2=5:2.
乙速度为40/(1-2/5)=200/3(千米/小时)
总路程为7.2*(200/3)=480(千米)