(2012•和平区一模)一块三角形废料如图所示,∠A=30°,∠C=90°,AB=12.用这块废料剪出一个矩形CDEF,其中,点D、E、F分别在AC、AB、BC上.要使剪出的矩形CDEF面积最大,点E应选在何处?

问题描述:

(2012•和平区一模)一块三角形废料如图所示,∠A=30°,∠C=90°,AB=12.用这块废料剪出一个矩形CDEF,其中,点D、E、F分别在AC、AB、BC上.要使剪出的矩形CDEF面积最大,点E应选在何处?

在Rt△ABC中,∠A=30°,AB=12,∴BC=6,AC=AB•cos30°=12×32=63.∵四边形CDEF是矩形,∴EF∥AC.∴△BEF∽△BAC.∴EFAC=BEBA.设AE=x,则BE=12-x.EF=63(12−x)12=32(12−x).在Rt△ADE中,DE=12AE=12x....