证明1/log5(16)+1/2log3(16)+1/3log2(16)<1

问题描述:

证明1/log5(16)+1/2log3(16)+1/3log2(16)<1

1/log5(16)+1/2log3(16)+1/3log2(16)
=log16(5)+log16(3)^1/2+log16(2)^1/3
=log16(5*3^1/2*2^1/3)
因5*3^1/2*2^1/3已明白 谢谢