一:已知二次函数f(x)=ax^2+x,若对任意x1.x2属于整个实数集,恒有2f((x1+X2)/2)

问题描述:

一:已知二次函数f(x)=ax^2+x,若对任意x1.x2属于整个实数集,恒有2f((x1+X2)/2)

一、把函数表达式直接带入2f((x1+X2)/2)0,从而求得集合A=(-1/a,0)
B=(-a-4,a-4)不为空,B是A的子集所以a-4=-1/a,所以a的范围为0到-2+2根号5
二、(1)f(kx)=akx+b,k/2+f(x)=k/2+ax+b,所以a=ak且b=b+k/2,k不存在,所以一次函数不属于M
(2)f(kx)=log2(kx)=log2(k)+log2(x)
k/2+f(x)=k/2+log2(x),log2(k)=k/2,k^2=2^k,所以k=2
三、设函数f(x)=ax^3-2bx^2+cx+4d(a,b,c,d属于R)的图像关于原点对称,可求得b=d=0,f(x)=ax^3+cx
一阶导数f'(x)=3ax^2+c=0时,有一个解为x=1,所以3a+c=0;f(1)=a+c=-2/3,所以a=1/3,c=-1
f'(x)=3ax^2+c=x^2-1为在x处切线斜率.
(1)假设存在,则f'(x1)=-1/f'(x2)
(x1^2-1)(x2^2-1)=-1,
2=x1^2+x2^2-x1^2*x2^2>=2|x1x2|-x1^2*x2^2,因为x1和x2在-1至1之间,所以不等式恒不成立,所以不存在符合题意的两个点
(2)在[-1,1]范围内f'(x)=x^2-1