已知f(x)=2sin(1/3x-兀/6),x属于R,(1)求f(0)的值(2)设a,B属[0,兀/2]...求sin(a+B)
问题描述:
已知f(x)=2sin(1/3x-兀/6),x属于R,(1)求f(0)的值(2)设a,B属[0,兀/2]...求sin(a+B)
已知f(x)=2sin(1/3x-兀/6),x属于R,(1)求f(0)的值(2)设a,B属[0,兀/2],f(3a+兀/2)=10/13,f(3B+兀/2)=6/5求sin(a+B)的值
答
1、
f(x)=2sin(1/3x-π/6),
f(0)=2sin(-π/6)=-2*(1/2)=-1.
2、
f(3a+π/2)=2sin(a+π/6-π/6)=2sina=10/13,所以:sina=5/13;
f(3b+π/2)=2sin(b+π/6-π/6)=2sinb=6/5,所以:sinb=3/5;
又因为a,b在第一象限,所以:cosa=12/13,cosb=4/5.
所以:
sin(a+b)
=sinacosb+cosasinb
=(5/13)(4/5)+(12/13)(3/5)
=56/65.