设数列{an}的前n项和为Sn,且a1=1,Sn=nan-2n(n-1) (1)求a2,a3,a4,并求出数列{an}的通项公式.(2)设数列{1/a
问题描述:
设数列{an}的前n项和为Sn,且a1=1,Sn=nan-2n(n-1) (1)求a2,a3,a4,并求出数列{an}的通项公式.(2)设数列{1/a
答
(1)因为a(n+1)=(1+q)an-q*a(n-1),所以有a(n+1)-an=qan-q*a(n-1),又因为bn=a(n+1)-an(n∈N*),所以有bn=q*b(n-1),即bn/b(n-1)=q,(n∈N*),所以{bn}是等比数列;(2)因为bn=a(n+1)-an(n∈N*),所以b1=a2-a1=1,所以bn...