设{An}是公差不为零的等差数列,Sn为其前n项和,满足A2^2+A3^2=A4^2+A5^2,S7=7.

问题描述:

设{An}是公差不为零的等差数列,Sn为其前n项和,满足A2^2+A3^2=A4^2+A5^2,S7=7.

由条件
(a1+d)²+(a1+2d)²=(a1+3d)²+(a1+4d)²
a1²+2a1d+d²+a1²+4a1d+4d²=a1²+6a1d+9d²+a1²+8a1d+16d²
2a1²+6a1d+5d²=2a1²+14a1d+25d²
8a1d+20d²=0
2a1d+5d²=0
d(2a1+5d)=0
d=0,或者2a1+5d=0 (1)
S7=(a1+a7)7/2=(a1+a1+6d)7/2=7(a1+3d)=7
a1+3d=1 (2)
当d=0时,代入上式,解得a1=1,得an=1
或者由(1)(2)
解得a1=-5,d=2得an=-5+2*(n-1)=2n-7
很高兴为您解答,本题有不理解的请追问!