一个三角形内心的内心的内心怎么求,
问题描述:
一个三角形内心的内心的内心怎么求,
已知D为三角形ABC 内心,E为三角形ABD内心,F为三角形BDE内心.若角BFE的度数为整数,求角BFE的最小值
可以告诉我为甚134度是错误答案么?
答
三角形有四心:即内心、外心、重心、垂心.
内心:三个角的角平分线的交点,也是这个三角形内切圆的圆心,这个点就叫做三角形的内心.
题目解答如下:
∵D是△ABC的内心;E是△ABD的内心;F是△DBE的内心
∴∠BDE=1/2 ∠ADB,∠ADB=90°+1/2∠C
∠BED=90°+1/2∠BAD ,∠BFE=90°+1/2∠BDE ,
∴∠BFE=90°+1/2∠BDE
=90°+1/4∠ADB
=90°+1 /4(90°+1/2∠C)
=112.5°+1/8∠C,
∵∠BFE的度数为整数,
∴ 当∠C=172°时,∠BFE=134°最小
所以,答案为134°.哦哦,不好意思,刚才漏下了但根据推理就是这样的解答了,不会有错的