用配方法解方程. (1)x2+2x-5=0; (2)x2+22x-240=0; (3)x2-8x+15=0; (4)-y2+2y+3=0.

问题描述:

用配方法解方程.
(1)x2+2x-5=0;
(2)x2+22x-240=0;
(3)x2-8x+15=0;
(4)-y2+2y+3=0.

(1)移项得x2+2x=5,
配方得x2+2x+1=5+1,
即(x+1)2=6,
开方得x+1=±

6

∴x1=-1+
6
,x2=-1-
6

(2)移项得x2+22x=240,
配方得x2+22x+121=240+121,
即(x+11)2=361,
开方得x+11=±19,
∴x1=8,x2=-30.
(3)移项得x2-8x=-15,
配方得x2-8x+16=-15+16,
即(x-4)2=1,
开方得x-4=±1,
∴x1=5,x2=3.
(4)移项得y2-2y=3,
配方得y2-2y+1=3+1,
即(y-1)2=4,
开方得y-1=±2,
∴y1=3,y2=-1.