在如图的直角坐标系中,已知点A(1,0);B(0,-2),将线段AB绕点A按逆时针方向旋转90°至AC. (1)求点C的坐标; (2)若抛物线y=-1/2x2+ax+2经过点C. ①求抛物线的解析式; ②在抛物线上
在如图的直角坐标系中,已知点A(1,0);B(0,-2),将线段AB绕点A按逆时针方向旋转90°至AC.
(1)求点C的坐标;
(2)若抛物线y=-
x2+ax+2经过点C.1 2
①求抛物线的解析式;
②在抛物线上是否存在点P(点C除外)使△ABP是以AB为直角边的等腰直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.
(1)过C作CD⊥x轴,垂足为D,
∵BA⊥AC,∴∠OAB+∠CAD=90°,
又∠AOB=90°,∴∠OAB+∠OBA=90°,
∴∠CAD=∠OBA,又AB=AC,∠AOB=∠ADC=90°,
∴△AOB≌△CDA,又A(1,0),B(0,-2),
∴OA=CD=1,OB=AD=2,
∴OD=OA+AD=3,又C为第四象限的点,
∴C的坐标为(3,-1);
(2)①∵抛物线y=-
x2+ax+2经过点C,且C(3,-1),1 2
∴把C的坐标代入得:-1=-
+3a+2,解得:a=9 2
,1 2
则抛物线的解析式为y=-
x2+1 2
x+2;1 2
②存在点P,△ABP是以AB为直角边的等腰直角三角形,
(i)若以AB为直角边,点A为直角顶点,
则延长CA至点P1使得P1A=CA,得到等腰直角三角形ABP1,过点P1作P1M⊥x轴,如图所示,
∵AP1=CA,∠MAP1=∠CAD,∠P1MA=∠CDA=90°,
∴△AMP1≌△ADC,
∴AM=AD=2,P1M=CD=1,
∴P1(-1,1),经检验点P1在抛物线y=-
x2+1 2
x+2上;1 2
(ii)若以AB为直角边,点B为直角顶点,则过点B作BP2⊥BA,且使得BP2=AB,
得到等腰直角三角形ABP2,过点P2作P2N⊥y轴,如图,
同理可证△BP2N≌△ABO,
∴NP2=OB=2,BN=OA=1,
∴P2(-2,-1),经检验P2(-2,-1)也在抛物线y=-
x2+1 2
x+2上;1 2
(iii)若以AB为直角边,点B为直角顶点,则过点B作BP3⊥BA,且使得BP3=AB,
得到等腰直角三角形ABP3,过点P3作P3H⊥y轴,如图,
同理可证△BP3H≌△BAO,
∴HP3=OB=2,BH=OA=1,
∴P3(2,-3),经检验P3(2,-3)不在抛物线y=-
x2+1 2
x+2上;1 2
则符合条件的点有P1(-1,1),P2(-2,-1)两点.