求幂级数∑【n=0 to 无穷】(x^n)/{n[3^n+(-2)^n]}的收敛域 答案是[-3,3),

问题描述:

求幂级数∑【n=0 to 无穷】(x^n)/{n[3^n+(-2)^n]}的收敛域 答案是[-3,3),

首先确定收敛半径,这个直接用书上的公式,两项相除求极限就可以了,极限是3,所以收敛半径R=3现在再来看端点处的熟练情况,x=3的时候就掠过啦,现在来说x=-3的情况,这是交错级数,一般的书上只给了一个定理,现在就用这个定...啊?x=3的时候咋整来着?具体点呗,俺人笨呐x=3,此时这个是正项级数,其中还有部分因子(-1)^n,导致不好判断,我们可以取其中的奇数项来判断,奇数项是∑3^(2n+1)/(2n+1)【3^(2n+1)-2^(n+1)】>∑1/(2n+1)>1/2*∑1/(n+1),这后面一个求和就是我们常见的级数求和了,显然这个级数是发散的,进一步根据正项级数的比较法则a>b,若b发散则a必然发散,所以原级数必然发散(因为缩小之后的级数是发散的)这只是我自己的观点,你看一下吧,我好久没学生疏了