f()θ=sin^(2π-θ)+sin(π/2+θ)-3/2+2cos^2(π+θ)+cos(-θ) 求f(π/3)
问题描述:
f()θ=sin^(2π-θ)+sin(π/2+θ)-3/2+2cos^2(π+θ)+cos(-θ) 求f(π/3)
答
f(θ)=sin^2(2π-θ)+sin(π/2+θ)-3/2+2cos^2(π+θ)+cos(-θ)
=sin^2θ+cosθ-3/2+2cos^2θ+cosθ
=cos^2θ+2cosθ-1/2
f(π/3)=1/4+√3-1/2=√3-1/4怎么求2cos(π-x)+3cos(π/2-x)=0 求sin^2x+1谢谢2cos(π-x)+3cos(π/2-x)=-2cosx+3sinx=0 , 2cosx=3sinx , 4cos^2x=9sin^2x4-4sin^2x=9sin^2x , sin^2x=4/13sin^2x+1 =17/13