设x、y、z为正实数,求函数f(x、y、z)=(1+2x)(3y+4x)(4y+3z)(2z+1)/xyz的最小值.
问题描述:
设x、y、z为正实数,求函数f(x、y、z)=(1+2x)(3y+4x)(4y+3z)(2z+1)/xyz的最小值.
答
f(x、y、z)=(1+2x)(3y+4x)(4y+3z)(2z+1)/xyz≥2(2x)*2(12xy)*2(12yz)*2(2z)/xyz=16*2*12xyz/xyz=384 2x,12xy,12yz,2z分别开根号