三角形ABC中,角BAC是直角,AC大于AB,AD是高,M是BC的中点,求证AC^2-AB^2=2*DM*BC

问题描述:

三角形ABC中,角BAC是直角,AC大于AB,AD是高,M是BC的中点,求证AC^2-AB^2=2*DM*BC

AB^2=BD^2+AD^2
AC^2=DC^2+AD^2
AC^2-AB^2=DC^2+AD^2-BD^2-AD^2
=DC^2-BD^2
=(DC+BD)(DC-BD)
DC+BD=BC
DC-BD=DM+CM-BD=DM+BM-BD=DM+DM+BD-BD=2*DM
AC^2-AB^2=2*DM*BC