1.已知等差数列{an}中,Sn=18,an+a(n-1)+a(n-2)=3,S3=1,则n=?

问题描述:

1.已知等差数列{an}中,Sn=18,an+a(n-1)+a(n-2)=3,S3=1,则n=?
2.等比数列{an}共有2n+1项,奇数项之积为100,偶数项之积为120,则a(n+1)为?

由S3=1,即,a1+(a1+d)+(a1+2d)=1得:a1+d=1/3 (A)
由an+a(n-1)+a(n-2)=3得:a1+(n-2)d=1 (B)
由Sn=18得:(a1+a1+(n-1)d)/2×n=18 (C)
由(A)、(B)、(C)得
n^2-30n+81=0
解得n=27(舍掉3)
奇项积=a1·a3·a5·…·a(2n+1)
=a1·a1q^2·a1q^4·…·a1q^(2n)
=a1^(n+1)q^(2(1+2+…+n))
=100 (1)
偶项积=a2·a4·a6·…·a(2n)
=a2·a2q^2·a2q^4·…·a2q^(2(n-1))
=a2^nq^n·q^(2(1+2+3+…+n-I))
=a1^nq^n·q^(2(1+2+3+…+n-I))
=120 (2)
(1)/(2)得:a1q^n=100/120=5/6
a(n+1)= a1q^n=100/120=5/6