已知tanθ=1−aa(0<a<1),化简sin2θa+cosθ+sin2θa−cosθ.
问题描述:
已知tanθ=
(0<a<1),化简
1−a a
+
sin2θ a+cosθ
.
sin2θ a−cosθ
答
sin2θa+cosθ+sin2θa−cosθ=asin2θ−sin2θcosθ+asin2θ +cosθsin2θ(a+cosθ)(a−cosθ)=2asin2θa2−cos2θ因为tanθ=1−aa,所以2asin2θa2−cos2θ=2atan2θa2tan2θ+a2−1=2a×1−aaa2×1−aa+a2−1...