已知△ABC中,A:B:C=1:2:3,a=1,则a−2b+csinA−2sinB+sinC=_.

问题描述:

已知△ABC中,A:B:C=1:2:3,a=1,则

a−2b+c
sinA−2sinB+sinC
=______.

根据A:B:C=1:2:3,得到A=30°,B=60°,C=90°,
∵a=1,∴c=2,b=

3

∴由正弦定理得:
a
sinA
=
b
sinB
=
c
sinC
=
−2b
−2sinB
=
1
1
2
=2,
a−2b+c
sinA−2sinB+sinC
=2.
故答案为:2