求不定积分∫((1/x^2-x-12))dx

问题描述:

求不定积分∫((1/x^2-x-12))dx

1/(x^2-x-12)
=1/(x-4)*(x+3)
=(1/7)[1/(x-4)-1/(x+3)]
所以本题的不定积分为:
=(1/7)(ln|x-4|-ln|x+3|)
=(1/7)ln(|x-4|/|x+3|)+c