复数1+i^2+i^3+……+i^10等于多少?
问题描述:
复数1+i^2+i^3+……+i^10等于多少?
答
=1+(i^2)+(i^2)i+(i^2)(i^2)+(i^2)(i^2)i+(i^2)(i^2)(i^2)+(i^2)(i^2)(i^2)i+(i^2)(i^2)(i^2)(i^2)+(i^2)(i^2)(i^2)(i^2)i+(i^2)(i^2)(i^2)(i^2)(i^2) [因为(i^2)= -1, 所以] = 1 - 1 - i + 1 + i -1 - i + 1 + i -1...