高中参数方程 定点到动直线距离 x=4sinA y=3cosA A为参数
问题描述:
高中参数方程 定点到动直线距离 x=4sinA y=3cosA A为参数
x=4sinA y=3cosA A为参数
BC为曲线上的两点.OB垂直OC
求证O到直线BC距离为定值
答
易知曲线方程为:x²/16+y²/9=1
设OC所在直线为:y=kx,则OB所在直线为:y=-x/k
易得:xB²=16*9k²/(16+9k²),xC²=16*9/(9+16k²)
所以:OB²=16*9(1+k²)/(16+9k²),OC²=16*9(1+k²)/(9+16k²)
BC²=OB²+OC²=16*9(1+k²)/(16+9k²)+16*9(1+k²)/(9+16k²)
设OD垂直BC于点D,则有:OD*BC=OB*OC
所以:OD²=OB²*OC²/BC²=16*9/25
即:OD=12/5,是定值