如图所示,不共面的三条直线交于O点,在O点的同侧上分别取点A和A′,B和B′,C和C′,使得OA/OA′=OB/OB′=OC/OC′,求证:△ABC∽△A′B′C′.

问题描述:

如图所示,不共面的三条直线交于O点,在O点的同侧上分别取点A和A′,B和B′,C和C′,使得

OA
OA′
=
OB
OB′
=
OC
OC′
,求证:△ABC∽△A′B′C′.

证明:如图,∵

OA
OA′
=
OB
OB′

∴A′B′∥AB,
A′B′
AB
=
OA
OA′

同理A′C′∥AC,B′C′∥BC,
A′C′
AC
=
B′C′
BC
=
OA
OA′

A′B′
AB
=
A′C′
AC
=
B′C′
BC

∴△ABC∽△A′B′C′.