如图所示,不共面的三条直线交于O点,在O点的同侧上分别取点A和A′,B和B′,C和C′,使得OA/OA′=OB/OB′=OC/OC′,求证:△ABC∽△A′B′C′.
问题描述:
如图所示,不共面的三条直线交于O点,在O点的同侧上分别取点A和A′,B和B′,C和C′,使得
=OA OA′
=OB OB′
,求证:△ABC∽△A′B′C′.OC OC′
答
证明:如图,∵
=OA OA′
,OB OB′
∴A′B′∥AB,
∴
=A′B′ AB
.OA OA′
同理A′C′∥AC,B′C′∥BC,
∴
=A′C′ AC
=B′C′ BC
,OA OA′
∴
=A′B′ AB
=A′C′ AC
.B′C′ BC
∴△ABC∽△A′B′C′.