z=e^(uv) u=ln[根号(x^2+y^2)] v=arctan(y/x)
问题描述:
z=e^(uv) u=ln[根号(x^2+y^2)] v=arctan(y/x)
复合函数的偏导数或导数
答
u=ln[根号(x^2+y^2)]=1/2ln(x^2+y^2)z'x=ve^(uv)*1/[2(x^2+y^2)]*2x+ue^(uv)*1/(1+y^2/x^2)*(-y/x^2)=ve^(uv)*x/(x^2+y^2)-ue^(uv)*y/(x^2+y^2) (u,v自己代入)z'y=ve^(uv)*1/[2(x^2+y^2)]*2y+ue^(uv)*1/(1+y^2/x...