y=sin^2 x-2cosx的值域是

问题描述:

y=sin^2 x-2cosx的值域是
1.如题
2.y=f(x)=2sin[(π/2)x+π/5],对任意实数x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值是
对于这类题目 从来就没对过 o(>_

sin^2x-2cosx=1-cos^2x-2cosx=2-(1+cosx)^2
COSX值为-1到1,故此题答案是2到-2
第2题:
F(X)为正弦函数,值区别为-2到2,若F(X1)