在三角形ABC中,tan[(A+B)/2]=2sinC.

问题描述:

在三角形ABC中,tan[(A+B)/2]=2sinC.
(1)求角C的大小(2)若A*B=1,求三角形ABC周长的取值范围.
(角C的值不是90度而是60度,取值范围也不是)2

一楼你个烧饼 抄错题了
tan(A+B)/2=2sinC
tan(180-C)/2=2sinC
tan(90-(C/2))=2sinC
cot(C/2)=2sinC
cotc/2=cos(c/2)/sin(c/2)
sinc=2sin(c/2)cos(c/2)
所以有cos(c/2)/sin(c/2)=4sin(c/2)cos(c/2)
1=4sin²(c/2)
sin²(c/2)=1/4
sin(c/2)=1/2
C/2=30
C=60
一楼你个烧饼 抄错题了
tan(A+B)/2=2sinC
tan(180-C)/2=2sinC
tan(90-(C/2))=2sinC
cot(C/2)=2sinC
cotc/2=cos(c/2)/sin(c/2)
sinc=2sin(c/2)cos(c/2)
所以有cos(c/2)/sin(c/2)=4sin(c/2)cos(c/2)
1=4sin²(c/2)
sin²(c/2)=1/4
sin(c/2)=1/2
C/2=30
C=60
AB=1,那么AC=AB*sin(120-A),BC=ABsinA
那么周长L=AB+AC+BC= [1+sinA+sin(120-A)] 由于0