如图,等腰三角形ABC中,AB=AC,AH垂直BC,点E是AH上一点,延长AH至点F,使FH=EH,(1)求证:四边形EBFC是菱形;(2)如果∠BAC=∠ECF,求证:AC⊥CF.

问题描述:

如图,等腰三角形ABC中,AB=AC,AH垂直BC,点E是AH上一点,延长AH至点F,使FH=EH,

(1)求证:四边形EBFC是菱形;
(2)如果∠BAC=∠ECF,求证:AC⊥CF.

证明:(1)∵AB=AC,AH⊥CB,∴BH=HC.(2分)∵FH=EH,∴四边形EBFC是平行四边形.(2分)又∵AH⊥CB,∴四边形EBFC是菱形.(2分)(2)证明:∵四边形EBFC是菱形.∴∠2=∠3=12∠ECF.(2分)∵AB=AC,AH⊥CB...
答案解析:(1)根据题意可证得△BCE为等腰三角形,由AH⊥CB,则BH=HC,从而得出四边形EBFC是菱形;
(2)由(1)得∠2=∠3,再根据∠BAC=∠ECF,得∠4=∠3,由AH⊥CB,得∠3+∠1+∠2=90°,从而得出AC⊥CF.
考试点:菱形的判定与性质;等腰三角形的性质.
知识点:本题考查了菱形的判定和性质,以及等腰三角形的性质,是基础知识要熟练掌握.