已知f'[(sinx)^2]=(cosx)^2+(tanx)^2,0

问题描述:

已知f'[(sinx)^2]=(cosx)^2+(tanx)^2,0

f'(sinx^2)=(1-sinx^2)+1/(1-sinx^2)-1
f'(x)=1-x+1/(1-x)-1
=1/(1-x) -x
f(x)=ln(1-x)-(1/2)x^2+C最后应该是 -ln(1-x)吧?