已知:将一副三角板(Rt△ABC和Rt△DEF)如图①摆放,点E、A、D、B在一条直线上,且D是AB的中点.将Rt△DEF绕点D顺时针方向旋转角α(0°
问题描述:
已知:将一副三角板(Rt△ABC和Rt△DEF)如图①摆放,点E、A、D、B在一条直线上,且D是AB的中点.将Rt△DEF绕点D顺时针方向旋转角α(0°<α<90°),在旋转过程中,直线DE、AC相交于点M,直线DF、BC相交于点N,分别过点M、N作直线AB的垂线,垂足为G、H.
(1)当α=30°时(如图②),求证:AG=DH;
(2)当0°<α<90°时,(1)中的结论是否成立?请根据图③说明理由.
(3)在Rt△DEF绕点D顺时针方向旋转过程中,DM与DN的比值是否发生改变?如果不改变,请直接写出比值;如果改变,请说明理由.
答
(1)证明:由题意可得:∠A=∠ADM=30°,∴MA=MD,又∵MG⊥AD于点G,∴AG=DG,∵∠BDC=180°-∠ADE-∠EDF=180°-30°-90°=60°=∠B,∴CB=CD,∴C与N重叠,又∵NH⊥DB于点H,∴DH=BH,∵AD=DB,∴AG=DH;(2)当0...