已知数列an满足a1=2k,an.a(n-1)=2ka(n-1)-k²,求证数列(1除以an-k)是等差数列
问题描述:
已知数列an满足a1=2k,an.a(n-1)=2ka(n-1)-k²,求证数列(1除以an-k)是等差数列
并求出数列an的通项公式.
答
1/(an-k)-1/[a(n-1)-k)=[a(n-1)-an]/[(an-k)(a(n-1)-k)]=[a(n-1)-an]/[an*a(n-1)-k(an+a(n-1))+k²]=[a(n-1)-an]/[2ka(n-1)-k(an+a(n-1))]=[a(n-1)-an]/[k*(a(n-1)-an)]=1/k为常数令n=1∴1/(a1-k)=1/k∴数列{...