若a,β是二次方程x²-2kx+k+6=0的两实数根,求y=(a+1)²+(β+1)²的取值范围

问题描述:

若a,β是二次方程x²-2kx+k+6=0的两实数根,求y=(a+1)²+(β+1)²的取值范围

你可以先根据根与系数的关系用k将a+β和a×β表示出来,再将后边的展开,结合a+β和a×β与k的关系,用k将(a+1)²+(β+1)²表示。就会使y变成关于k的函数,至于k的取值范围,根据△大于等于零即可解除。定义域知道,值域自然也知道,代数重在思路清晰,自己动手练习体验运算过程。
如满意,望采纳

答:
α、β是方程x²-2kx+k+6=0的两个实数根
根据韦达定理有判别式有:
α+β=2k
αβ=k+6
判别式=(-2k)²-4(k+6)>=0
所以:k²-k-6>=0
所以:(k-3)(k+2)>=0
解得:k=3
y=(α+1)²+(β+1)²
=(α+1+β+1)²-2(α+1)(β+1)
=(2k+2)²-2(αβ+α+β+1)
=4(k²+2k+1)-2(k+6+2k+1)
=4k²+8k+4-6k-14
=4k²+2k-10
开口向上的抛物线,对称轴k=-1/4
k>=3时,y是单调递增函数,y>=y(3)=36+6-10=32
k=y(-2)=16-4-10=2
所以:y的取值范围是 [2,+∞)