a b c d ∈r+ 证明(ad+bc)/bd+(ab+cd)/ac≥4

问题描述:

a b c d ∈r+ 证明(ad+bc)/bd+(ab+cd)/ac≥4

用公式:a+b≥2√ab (a>0,b>0) 左边=1/2(bc/a+bc/a)+1/2(ac/b+ac/b)+1/2(ab/c+ab/c)=1/2(bc/a+ac/b)+1/2(bc/a+ab/c)+1/2(ac/b+ab/c)≥1/2 * 2c+1/2 * 2b + 1/2 * 2a =a+b+c