数列{an}的前n项和为Sn,a1=1,an+1-an-1=0,数列{bn}满足b1=2,anbn+1=2an+1bn. (1)求S200; (2)求bn.

问题描述:

数列{an}的前n项和为Sn,a1=1,an+1-an-1=0,数列{bn}满足b1=2,anbn+1=2an+1bn
(1)求S200;            (2)求bn

(1)∵{an}的前n项和为Sn,a1=1,an+1-an-1=0,
∴an+1-an=1,
∴数列{an}是以a1=1为首项,d=1为公差的等差数列,
∴S200=200×1+

200×199
2
×1=20100.
(2)由(1)得an=n,
∵数列{bn}满足b1=2,anbn+1=2an+1bn
∴nbn+1=2(n+1)bn
bn+1
n+1
=2•
bn
n

∴{
bn
n
}是以
b1
1
=2为首项,q=2为公比的等比数列,
bn
n
=2×2n-1=2n
bn=n•2n