数列{an}的前n项和为Sn,a1=1,an+1-an-1=0,数列{bn}满足b1=2,anbn+1=2an+1bn. (1)求S200; (2)求bn.
问题描述:
数列{an}的前n项和为Sn,a1=1,an+1-an-1=0,数列{bn}满足b1=2,anbn+1=2an+1bn.
(1)求S200; (2)求bn.
答
(1)∵{an}的前n项和为Sn,a1=1,an+1-an-1=0,
∴an+1-an=1,
∴数列{an}是以a1=1为首项,d=1为公差的等差数列,
∴S200=200×1+
×1=20100.200×199 2
(2)由(1)得an=n,
∵数列{bn}满足b1=2,anbn+1=2an+1bn,
∴nbn+1=2(n+1)bn,
∴
=2•bn+1 n+1
,bn n
∴{
}是以bn n
=2为首项,q=2为公比的等比数列,b1 1
∴
=2×2n-1=2n,bn n
∴bn=n•2n.