已知函数f(x)=ax^2+bx+1(a,b为实数),x属于R,F(x)=f(x),x>0或-f(x),x0,且f(x)为偶函数,判断F(m)+F(n)能否大于零
问题描述:
已知函数f(x)=ax^2+bx+1(a,b为实数),x属于R,F(x)=f(x),x>0或-f(x),x0,且f(x)为偶函数,判断F(m)+F(n)能否大于零
答
我只说第一问哦。
根据定义,F(-1)=-A+B+1=0
然后再用判别式等于0且A大于0来联立方程组,可解。
很简单。
答
0分 回答这样的题 谁愿意呀
答
(1)根据题目条件:
知道二次函数的开口向上,且顶点坐标是(-1,0)
即两根之积为 1/a=1 所以 a=1 ,-b/a=-2 b=2
f(x)=x^2+2x+1
F(x)=x^2+2x+1 x>0
F(x)=-(x^2+2x+1) x0 且函数对称轴是x=0
F(m)+F(n)=f(m)-f(-n)
由于 m+n>0 所以 m>-n>0
而f(m)在大于0区间是增函数,所以 f(m)-f(-n)>0
即F(m)+F(n)>0