已知函数f(x)=x^3+2x^2+x. 若对于任意x>0,f(x)>=ax^2恒成立,求实数a的取值范围.

问题描述:

已知函数f(x)=x^3+2x^2+x. 若对于任意x>0,f(x)>=ax^2恒成立,求实数a的取值范围.

x>0时,f(x) ≥ax^2
化简得x(x^2+2x-ax+1)≥0
由于x>0,所以x^2+(2-a)x+1≥0
(2-a)^2-4×1×1≤0
0≤a ≤4

即x>0时,f(x)-ax^2>=0恒成立
化简为x(x^2+2x-ax+1)>=0
由于x>0所以,只要有x>0时,
f(x)=x^2+2x-ax+1>=0即可
故有
1,-(2-a)/2>0时,
△=(2-a)^2-4解之得22,-(2-a)/2f(0)>=0
解之得a综上可得
a

根据题意f(x)>=ax^2
x^3+2x^2+x>=ax^2
两边除以x^2
x^3+2x^2+x/x^2>=a
x+2+1/x>=a
因此只要求出x+2+1/x的最小值就可以了
因为x>0
所以x+2+1/x>=2+2=4
所以a