如图,△ABC中,∠ACB=90°,CD⊥AB,点D为垂足,点E,F分别在AC.AB边上,且∠AEF=∠B.求证:EF∥CD.

问题描述:

如图,△ABC中,∠ACB=90°,CD⊥AB,点D为垂足,点E,F分别在AC.AB边上,且∠AEF=∠B.求证:EF∥CD.

证明:∵∠ACB=90°,
∴∠B+∠A=90°,
∵CD⊥AB,
∴∠ADC=90°,
∴∠A+∠ACD=90°,
∴∠B=∠ACD,
∵∠AEF=∠B,
∴∠AEF=∠ACD,
∴EF∥CD.