如图所示,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD,CE相交于F. 求证:(1)△ABD≌△ACE; (2)AF平分∠BAC.

问题描述:

如图所示,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD,CE相交于F.
求证:(1)△ABD≌△ACE;
(2)AF平分∠BAC.

证明:(1)∵BD⊥AC,CE⊥AB,
∴∠AEC=∠ADB=90°,
在△ABD和△ACE中,

∠ADB=∠AEC
∠BAD=∠CAE
AB=AC

∴△ABD≌△ACE(AAS).
(2)∵△ABD≌△ACE,
∴AE=AD,
在Rt△AEF和Rt△ADF中,
AF=AF
AE=AD

∴Rt△AEF≌Rt△ADF(HL),
∴∠EAF=∠DAF,
∴AF平分∠BAC.