从甲地到已地的路有一段上坡与一段平路,如果保持上坡每小时走3Km,平路每小时走4Km,下坡每小时走5Km,那么从甲地到乙地需45分,从已地到甲地需要42分,甲地到乙地全程是多少.
问题描述:
从甲地到已地的路有一段上坡与一段平路,如果保持上坡每小时走3Km,平路每小时走4Km,下坡每小时走5Km,那么从甲地到乙地需45分,从已地到甲地需要42分,甲地到乙地全程是多少.
让我下次再碰到这种题目会做,
答
好像是54分钟?
(1)二元解法
设上坡x千米,平路y千米,则
X/3+Y/4=54/60
X/5+Y/4=42/60
解上方程组,得
X=1.5
Y=1.6
X+Y=1.5+1.6=3.1
答:从甲地到乙地全程是3.1千米.
(2)一元解法 :
从甲地到乙地比从乙地到甲地多用12分钟(0.2小时)是由于上下坡的速度不一样造成的.
甲乙两地的坡路有x千米,
x/3-x/5=0.2
x=1.5,
那么上坡用的时间是:1.5/3=0.5小时
平路路程=(54/60-0.5)*4 = 1.6 千米
全程:1.5+1.6=3.1 千米