设矩阵A=-2 1 1 ,1 -2 1 ,1 1 -2,求正交矩阵T使T-1AT=T'39;AT为对角矩阵.

问题描述:

设矩阵A=-2 1 1 ,1 -2 1 ,1 1 -2,求正交矩阵T使T-1AT=T'39;AT为对角矩阵.
要求写出正交矩阵T和相应的对角矩阵T^-1AT=T'AT

λ1=0,λ2=λ3=-3属于0的特征向量α1=(1,1,1)^T属于-3的特征向量α2=(1,-1,0)^T,α3=(1,0,-1)^T正交化,单位化:β1=(1/√3,1/√3,1/√3)^T,β2=(1/√2,-1/√2,0)^Tβ3=(1/√6,-2/√6,1/√6)^TT=[β1,β2...